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Abstract
Translating real-world scenarios into simulation environments is essential for the safe, cost-effective,
and scalable development of autonomous vehicles. Simulations enable rigorous testing of complex,
rare, and hazardous scenarios, while also allowing for rapid iteration, data generation, and exposure
to diverse conditions. However, the real-to-sim gap remains a significant challenge, as automated
methods often fail to accurately capture real-world conditions, and manual scenario generation is
labor-intensive and struggles to replicate realistic dynamics and unpredictable human behavior.

In this work, we propose Road2Code, a framework that bridges the gap between real-world
traffic data and simulation by leveraging neuro-symbolic program synthesis. Road2Code translates
real-world driving scenarios into Scenic programs1 for the CARLA simulator2, utilizing large lan-
guage models for code generation. To enhance efficiency, we employ a distillation approach, where
a large language teacher model generates reasoning processes that refine training for a smaller stu-
dent model used for inference. Road2Code enhances simulation fidelity by accurately modeling
real-world scenarios and agent behaviors, while enabling scenario editing and counterfactual anal-
ysis, providing essential tools for testing and refining autonomous vehicle behavior. This direct link
between real-world data and simulation lays a foundation for advancing trustworthy and transparent
autonomous driving research, accelerating progress toward reliable autonomous vehicle systems.
Keywords: Neuro-symbolic Programming, Large Language Models, Artificial Intelligence, Au-
tonomous Driving.

1. Introduction

Photorealistic simulations are an important aspect of autonomous vehicle (AV) testing and devel-
opment. Simulations are easy to program, less expensive, less time consuming when compared
to real-world testing Ljungbergh et al. (2025). They are possibly the only means to test edge-cases
such as sudden pedestrian crossing or scenarios that are close to collision Kalra and Paddock (2016).
Additionally, simulations provides a risk-free, scalable environment for AV testing to enable iter-
ative improvement of perception and planning Rong et al. (2020), accelerate training Chen et al.
(2020), enable dynamic adjustments in vehicle behavior Filos et al. (2020), and support rigorous
validation and verification Li et al. (2023).

However, existing frameworks often fall short in capturing the complexity of real-world driving
and traffic. Most frameworks rely heavily on pre-constructed, deterministic scenarios and hand-
coded agent behavior models that lack the realism and unpredictability inherent in actual traffic

1. Scenic is a domain-specific probabilistic language for interpretable traffic scenario generation
2. CARLA is an open-source simulator for autonomous driving, for testing self-driving systems
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Figure 1: Road2Code converts real-world video into realistic CARLA simulations using Scenic, a
domain-specific language. It preserves key elements like road structure, vehicle positions, and agent
behavior (left) and scene editing for further analysis and scenario refinement (right).

Chao et al. (2018a,b). This limits the ability of simulations to effectively represent critical and
nuanced events necessary for robust AV testing. Moreover, traditional simulation methods struggle
to seamlessly integrate real-world sensory input, into simulation, further reducing their fidelity and
practical relevance Chao et al. (2018a); Li et al. (2019). Addressing these limitations requires a
real-to-simulation framework that can automatically translate real-world driving observations into
realistic, editable simulation scenarios, providing AV systems with comprehensive exposure to the
full spectrum of driving situations that it may encounter during deployment.

In this paper, we take the first steps toward bridging the gap between real-world traffic scenar-
ios and simulations. Our aim is to create a repository of scenarios that reflect the complexity of
real-world driving behaviors while providing the advantages of simulations such as scenario editing
and replay. To achieve this, we propose a neuro-symbolic approach that generates scenario simu-
lations directly from real-world video inputs, enabling seamless integration of real-world data into
simulation frameworks. Using the powerful code generation and reasoning capabilities of Large
Language Models (LLMs) Achiam et al. (2023); Roziere et al. (2023); Touvron et al. (2023); Anil
et al. (2023); Devlin et al. (2019), we extract vehicle trajectories from the input video data and
translate their relative motions into Scenic code Fremont et al. (2019) using our neuro-symbolic
synthesis framework. This code can then be loaded into simulators such as CARLA Dosovitskiy
et al. (2017) for subsequent testing and analysis.

Large models like the GPT family Achiam et al. (2023); OpenAI (2024) excel at code generation
but require billions of parameters, demanding significant computational and memory resources Xu
et al. (2024). Therefore, we employ a smaller language model for program generation by distilling
knowledge from a teacher model. Using Zero-Shot Chain-of-Thought (ZS-CoT) prompting Kojima
et al. (2023), the teacher model generates reasoning steps that link input scenarios to code, which
are then incorporated into the student model for fine-tuning and inference, improving efficiency
without sacrificing performance.

In summary, our key contributions in this work are:

• We introduce Road2Code, a framework that translates real-world driving scenarios as cap-
tured by cameras and LiDAR sensors into symbolic representations. Road2Code models
diverse traffic patterns and vehicle behaviors, as shown in Figure 1, making it well-suited for
autonomous vehicle certification and testing.

• We harness the reasoning capabilities of Large Language Models for program generation, em-
ploying a Zero-shot Chain-of-Thought prompting approach to guide the program synthesizer
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in generating accurate and interpretable neuro-symbolic code that captures agent movements
and behaviors in real traffic scenarios.

• We demonstrate that scenarios generated from real-world videos are easily editable within
our framework (for example, Figure 1, right). Specifically, applications such as scene transla-
tion, editing, and post-mortem analysis highlight Road2Code’s utility for autonomous driving
simulations and comprehensive vehicle behavior testing prior to deployment.

2. Related Work

Neuro-symbolic Program Synthesis. Program synthesis—generating programs from high-level
task specifications—has long been a challenge in computer science Biermann (1978); Summers
(1977). Traditional approaches to program synthesis rely on automated search and reasoning but
are limited by engineering complexity and scalability Parisotto et al. (2016). Neuro-symbolic meth-
ods, which combine deep learning with symbolic reasoning, have emerged as a promising alternative
Chaudhuri et al. (2021); Devlin et al. (2017); Chen et al. (2021b); Hsu et al. (2023); Okamoto and
Parmar (2024); Dang-Nhu (2020); Mao et al. (2019); Stammer et al. (2021). These methods leverage
deep learning for processing unstructured data while using symbolic representations for logical rea-
soning, interpretability, and generalization Parisotto et al. (2016); Chaudhuri et al. (2021); Jha et al.
(2023). Applications of neuro-symbolic methods span textual reasoning Devlin et al. (2017), query
understanding Chen et al. (2021b); Barceló et al. (2023), vision and graphics Hsu et al. (2023);
Ellis et al. (2018), and multi-modal learning Mao et al. (2019); Stammer et al. (2021). In au-
tonomous driving and robotics, neuro-symbolic programming has enabled better decision-making
for autonomous agents Sun et al. (2021); Namasivayam et al. (2023); Bennajeh et al. (2019); El-
maaroufi et al. (2024a). More recently, a mixture of experts model has been applied to synthesize
autonomous vehicle scenarios from natural language description Elmaaroufi et al. (2024b). How-
ever, its potential for scenario generation in AV simulation remains largely unexplored, presenting
a valuable opportunity for future research.

Large Language Models. Recent advancements in large language models (LLMs) such as GPT-3
Achiam et al. (2023), GPT-4 Brown (2020), Llama Touvron et al. (2023), PaLM Anil et al. (2023),
and BERT Devlin et al. (2019) have demonstrated strong capabilities in natural language generation
Roziere et al. (2023), symbolic reasoning Chen et al. (2021a), and mathematical problem-solving
Hendrycks et al. (2021). However, enhancing and adapting LLMs’ reasoning for specific tasks re-
mains a challenge. Techniques such as Chain-of-Thought (CoT) prompting Wei et al. (2022) and
Zero-Shot Chain-of-Thought Kojima et al. (2023) enhance reasoning by generating intermediate
steps, making models more interpretable and adaptable. Our approach leverages Zero-shot CoT to
generate reasoning processes, which can enhance program synthesis abilities for simulation scenar-
ios. A key challenge to harnessing this reasoning ability is deploying LLMs with limited computa-
tional resources. Knowledge distillation and pruning techniques Sanh et al. (2020); Muralidharan
et al. (2024); Men et al. (2024); Xia et al. (2023) reduce model size while retaining performance,
but typically require training a new model from from scratch. Instead, we distill the reasoning pro-
cess by knowledge transfer from a teacher LLM to a lightweight student model, enabling efficient
program synthesis for simulations. Training LLMs by utilizing a teacher-student for knowledge
transfer have been shown to enhance LLM reasoning capability Saha et al. (2023); Ho et al. (2022).
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Scene Representations and Neural Rendering. Recent advancements in 3D scene reconstruc-
tion and neural rendering, including Neural Radiance Fields (NeRF) Mildenhall et al. (2021); Tan-
cik et al. (2022); Xu et al. (2022), Gaussian Splatting Wu et al. (2024); Kulhanek et al. (2024),
and implicit representations Sitzmann et al. (2019); Chen and Zhang (2019); Park et al. (2019),
have significantly improved autonomous driving simulations by enabling novel view synthesis and
sensor data generation. While these methods can render both static and dynamic scenes Pumarola
et al. (2021); Gao et al. (2021), they lack compositionality, making it difficult to edit individual
scene elements—an essential requirement for flexible scenario testing in AV simulations. Recent
efforts Ost et al. (2021); Tonderski et al. (2024); Yang et al. (2023); Khan et al. (2024); Bashetty
et al. (2020) have introduced editable scene representations, but they still fall short of providing
programmatic control over complex driving scenarios. In contrast, by representing traffic scenes
symbolically, our Road2Code approach enables precise control, scenario editing, and counterfac-
tual analysis—capabilities that neural rendering lacks. The work that is closest to us in recreating
real-world scenarios is Miao et al. (2024), however, their approach is fundamentally different. Our
approaches uses model distillation and fine-tuning of foundation models whereas Miao et al. (2024)
uses prompt engineering.

3. Road2Code Neuro-Symbolic Synthesis

3.1. Problem Formulation

Generating realistic and editable autonomous driving scenarios require structured programmatic
representations that accurately reflect real-world conditions. Given an input ego-vehicle video V ,
our goal is to generate a Scenic program P that encodes the scene, including the road structure,
agent behaviors, and dynamic interactions, which can then be rendered in CARLA for simulation.

Formally, given an input video sequence V = {It}Tt=1, It ∈ RH×W×3, where It is the RGB
frame at time t, our goal is to generate a programmatic representation:

P = {e, a}, e ∈ R, a = {ai}Ni=1, (1)

where e represents the road and environment, and ai represents the behaviors of the ith agent (vehi-
cle). The simulator function h then renders the scene:

V̂ = h(P ), V̂ ≈ V, (2)

ensuring realism and fidelity between the real and simulated scene.

3.2. Road2Code Architecture

Road2Code consists of multiple processing stages, leveraging LLMs for program synthesis and
neuro-symbolic reasoning for structured representation learning. We illustrate the architecture in
Figure 2 and describe it here.

Tracking Module T : The tracking module extracts vehicle trajectories from V , producing a set
of 3D vehicle positions relative to ego:

Xt = {xi,t}Ni=1, xi,t ∈ R3, (3)
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Figure 2: Road2Code extracts vehicle tracks and translates their motions into Scenic programs.
Using Zero-Shot Chain-of-Thought, a teacher model generates reasoning, which is integrated into
fine-tuning prompts while training the program synthesizer. At inference time, the generated pro-
gram P from the video V is deployed in CARLA for evaluation.

where xi,t is the position of the ith vehicle at time t. The sequence of vehicle trajectories is then
represented as:

X = (x1,x2 . . .xn) (4)

where each vehicle i has a trajectory xi = (xi,1, xi,2, . . . , xi,T ). We use a pre-trained Multi-Object
Tracking (MOT) model Hu et al. (2019); Chiu et al. (2021) to compute X .

Behavior Encoding Module E: Each vehicle’s movement is encoded into a behavior vector:

B = {bi,t}Ni=1, bi,t = (vi,t, ai,t), (5)

where vi,t is the velocity at time t, and ai,t is the action at t, such as lane change or braking.
This module produces an encoding function: B = E(X), ensuring structured representation of
autonomous agent (vehicle) behavior.

Prompt Generation Module G: The behavior encoding is converted into a structured text prompt
Y via the prompt generation function G: Y = G(B). This prompt serves as the input to the program
synthesizer. Specifically, G encodes vehicle behaviors into a structured textual format. For instance,
for each vehicle i, the initial placement is represented as: “Place car at xi,1”. This process
is repeated for all vehicles in Xt. Subsequently, a sequence of actions is generated, for example:
“drive forward at v0,t for 0.5 seconds, then ...”. The resulting text prompt
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Yj encapsulates the full scenario. Optionally, an additional reasoning process r can be incorporated
to provide structured guidance for scenario synthesis, modifying the prompt generation function to:

Y = G(B, r). (6)

This approach provides explicit agent actions and ensures interpretability, allowing LLMs to infer
correct programmatic rules and aiding the program synthesizer in generating realistic and logically
consistent simulation scenarios.

Program Synthesizer S: The program synthesizer S, implemented as a fine-tuned LLM, gener-
ates the Scenic program:

P = S(Y ), (7)

where P is the programmatic representation (see Equation (1)) that includes structured definitions
such as:

P = {e, a}, a = {define ai with position xi,1 and velocity vi,1}i. (8)

The synthesizer translates behavior into executable code, which can then be rendered in the CARLA
simulator to generate realistic and interpretable scenarios.

3.3. Teacher-Student Model Distillation

Figure 3: This example generated by
Road2Code defines agents, initial posi-
tions, and vehicle behaviors. Comments
manually edited.

Using large language models like GPT-4o for program
synthesis is computationally expensive. To reduce in-
ference costs, we employ knowledge distillation, where
a teacher model generates reasoning processes to train a
smaller student model, as illustrated in Figure 2.
Teacher Model: The teacher model generates an expla-
nation r for how scenario data X maps to the program
P :

r = g(X,P ). (9)

Following a Zero-shot Chain-of-Thought prompting Ko-
jima et al. (2023), we introduce structured reasoning such
as: r = “Let’s think step-by-step: Given
position xi,1, the vehicle must move with
velocity vi,1”. This structured reasoning enables the
student model to learn implicit relationships.
Student Model: This is fine-tuned using a dataset of
pairs of coordinates and ground truth programs: D =
{(Yj , Pj)}Nj=1, where training follows Equation (7): P̂j =
S(Yj , rj). To improve efficiency, we use QLoRA Dettmers et al. (2024) for low-rank adaptation,
reducing the number of trainable parameters while retaining performance.
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Table 1: We evaluate visual error of our model with and without Chain-of-Thought distillation. We
find that distillation improves SSIM by 5.4% and reduces MSE by 47.1%, lowering errors across all
metrics.

SSIM ↑ MSE ↓ LPIPS ↓ mAP50 ↑
No Distillation 0.8079 0.1251 0.2973 0.0190

Ours with ZS-CoT Distillation 0.8515 0.0662 0.1949 0.7333

Figure 4: Real-world traffic scenes are translated to simulation using Road2Code. The simulated
vehicles closely match real-world agents, with IoU scores between 0.6 and 0.7, indicating strong
alignment between simulated and real bounding boxes.

3.4. Training and Inference

Training Phase: Training follows a supervised fine-tuning approach: ① extract vehicle trajectories
Xj = T (Vj), ② encode behavior Bj = E(Xj), ③ generate prompt Yj = G(Bj) and ④ Fine-tune
student model with knowledge distillation

P̂k = S(Yk, g(Xk, Pk)),

where g generates reasoning explanations.
Inference Phase: Given an unseen driving sequence V , the interpretable scenic program is gener-
ated as:

P = S(G(E(T (V )))).

Note that the teacher model is not required at this stage, as reasoning knowledge is already embed-
ded in the student model. The Scenic program can be executed in CARLA, enabling simulation,
scenario editing, and counterfactual analysis.

The generated Scenic program is highly editable due to its high-level syntax, which allows
users to describe agent behaviors and movements in an intuitive manner. Unlike low-level scene
descriptions from 3D reconstruction-based methods Ost et al. (2021); Tonderski et al. (2024); Yang
et al. (2023); Khan et al. (2024); Zhou et al. (2024), Scenic provides a structured representation that
simplifies modifications.

4. Results and Discussion

4.1. Implementation

Network and Hyperparameters: We used the GPT-4o model OpenAI (2024) as the teacher model
with a temperature of 1.0. For the student model, we fine-tuned a pre-trained Llama 3.1 model
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Touvron et al. (2023) with 8 billion parameters, quantized to 8 bits. Text generation was performed
using top-k sampling (k = 50) with a temperature of 1.0 to balance diversity and determinism.
Training Details: The model was trained with 100 warm-up steps and 1,500 steps using the
AdamW optimizer Loshchilov and Hutter (2019) at a learning rate of 0.0003. In finetuning, QLoRA
hyperparameters were set to rank r = 16, α = 16, and a dropout probability of 0.05. Training was
conducted on a dataset of 500 prompt-program pairs generated from the nuScenes dataset. We
generated the programs in the dataset from the ground truth coordinates Caesar et al. (2020).
Datasets: We evaluate our model using nuScenes Caesar et al. (2020) and Waymo Open Dataset
Sun et al. (2020), large-scale datasets of real-world autonomous driving scenarios in urban environ-
ments. Waymo images have a resolution of 1920× 1280 and nuScenes images are 1600× 900. We
extract vehicle tracks over 5 frames at 0.5-second intervals for fine-grained evaluations.

4.2. Evaluation

Figure 5: Scenes generated from Road2Code on
instances from nuScenes and Waymo dataset.

Qualitative Evaluation. We evaluated our
model on real-world scenes from the nuScenes
and Waymo datasets, with visualizations shown
in Figure 5. The generated scenarios closely
match the real scenes, accurately preserving
vehicle placements, road layouts, and weather
conditions. For instance, note that the posi-
tion of the vehicles in the simulated images
generated by the Road2Code framework visu-
ally match their real-world counterparts. Our
framework can to handle multi-lane scenar-
ios, placing the vehicles in the correct lane, as
shown first and third scene of Waymo, and third
scene in nuScenes in Figure 5. Most notably, as
demonstrated in the third column of nuScenes in Figure 5, our framework can enable translating real
scenes of inclement weather (rain in this case) into clear day simulations, facilitating scene analysis.

Quantitative Evaluation. We evaluate the visual similarity of our model outputs quantitatively
in a Synthetic-to-Synthetic scenario to isolate key performance factors under controlled conditions.
Evaluating per-pixel quantitative performance on real-world scenes is challenging due to the lack
of accurate ground truth labels. To address this, we generate eight simulated 3D scenes in Carla,
varying vehicle locations, environments, and weather conditions, and use them as ground truth.
These scenes are processed through our framework, and the reconstructed 3D scenes are rendered
in CARLA. To assess similarity, we compute mean-squared error (MSE) as a per-pixel error metric,
and SSIM Wang et al. (2004) and LPIPS Zhang et al. (2018) scores to measure perceptual fidelity.

Additionally, we evaluate bounding box accuracy on real-world scenes, by computing the bound-
ing boxes of the agents in both ground truth and generated images using object detection, and then
the mAP@0.5 score Lin et al. (2014), that is, the mean average precision where the Intersection-
over-Union threshold for positive bounding box match is 0.5. As shown in Table 1, model dis-
tillation significantly improves visual similarity, generating images that more closely resemble the
original scenes.
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Generalization. Although our model was trained on nuScenes, it successfully generalized to
novel scenes in both Waymo and nuScenes datasets, as demonstrated in Figure 4. The generated
scenarios closely align with the real-world scenes, with vehicle bounding boxes exhibiting high
Intersection-over-Union (IoU) scores, indicating accurate spatial correspondence between the real
and synthesized environments.

4.3. Applications of Road2Code

Figure 6: We generate novel unseen sce-
narios by changing environment, weather
conditions, and vehicle configurations.

The Road2Code framework unlocks new capabilities
for AV testing and certification by enabling workflows
that would otherwise be extremely data-intensive, im-
practical or infeasible. In this section, we highlight
two key applications: Scenario Editing and Counter-
factual Analysis, both of which are critical for design-
ing safer AV systems and ensuring robust certification
processes.

Scenario Editing — Enhancing AV Certification by
Supplementing Test Scenarios: A major challenge
in certification of autonomous vehicles is the sparsity
of critical real-world driving scenarios. Certain high-
risk situations, such as sudden pedestrian crossings, or
near-miss collisions, occur rarely in real-world data.
With Road2Code, we overcome this limitation by sys-
tematically modifying and generating new scenarios in
a simulation environment. For instance, an AV operat-
ing in a specific neighborhood may rarely encounter a
busy intersection, whereas human drivers would nat-
urally accumulate far more experiences in such lo-
cations. Road2Code enables the targeted creation of
these rare but crucial scenarios to ensure comprehen-
sive evaluation of AV decision-making.

We first extract a symbolic representation of a
real-world scenario, then perform systematic modifi-
cations, such as adjusting road parameters (e.g., lane
count, intersections), altering physical surroundings
(e.g., vegetation, infrastructure elements) or introduc-
ing dynamic elements (e.g., vehicles, pedestrians, or
weather conditions). These modifications allow for
stress-testing AV models under a broad range of condi-
tions without requiring extensive real-world data col-
lection. Figure 6 demonstrates how Road2Code en-
ables scenario augmentation by introducing additional
vehicles or modifying the behaviors of existing agents,
expanding the test coverage of AVs.

Counterfactual Analysis: A fundamental tool for analyzing AV failures is counterfactual reason-
ing, which explores “what-if” scenarios by modifying past situations to investigate alternative out-

9



LEUNG TONG DUGGIRALA CHAKRAVARTHULA

Figure 7: The Scenic program generated from Road2Code is highly editable. We showcase un-
expected and unauthorized lane changes (top row) and oncoming traffic collisions (bottom). The
bottom-right scenario is from nuScenes and others from Waymo dataset.

comes. This is crucial for identifying whether an AV failure stems from a logical error, perception
inaccuracy, or poor decision-making.

Using Road2Code, we conduct counterfactual analysis by systematically altering agent behav-
iors to induce potentially unsafe conditions. As illustrated in Figure 7, Road2Code enables precise
manipulation of scenarios to test common accident cases that are difficult to capture in real-world
datasets. This capability potentially allows for validating AV decision-making robustness under ad-
versarial conditions and ensuring safer real-world deployment by eliminating critical vulnerabilities
in systems.

5. Conclusion

We have presented a framework for converting a real-world autonomous vehicle driving scenario
into a symbolic representation using the domain-specific language, Scenic. Our Road2Code frame-
work leverages the reasoning capabilities of large language models and model distillation to gen-
erate neuro-symbolic programs. We showed that Road2Code generates scenes with high fidelity
and demonstrated the model’s applicability for simulation and testing of autonomous vehicles un-
der hazardous scenarios. An important future step is to integrate Road2Code with visually realistic
renderers and novel scene representations. Recent efforts Ost et al. (2021); Tonderski et al. (2024);
Yang et al. (2023) based on inverse rendering have introduced editable scene representations; how-
ever, these models still lack the capacity to provide programmatic control over complex driving
scenarios. By providing a bridge to the symbolic representation, our model can be further aug-
mented to better support autonomous driving applications.
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Appendix A. Programmatic Scenario Editability

Figure 8 illustrates the structure and syntax of a Scenic program. The syntax of Scenic is a domain-
specific language suited for scenario definitions in simulation-based testing. The generated program
consists of a list of definitions for a list of vehicles, describing the characteristics of each vehicle.
Each vehicle must correspond to a behavior to describe the motion over time. We note that the LLM
has learned to generate the behavior and vehicle definition code, which is formed into a functioning
program. However, other sections of the code, such as definitions of the position of the ego-vehicle,
the road that the vehicle has been placed on, and essential start-up code, have not been generated by
the LLM and was edited in.

We present various edits to the programs, demonstrating their ability to generate modified sce-
narios. This enhances the diversity of situations used in simulation and enables counterfactual
testing to identify autonomous driving bugs in critical scenarios. We present some essential editing
operations, which include the corresponding line in the program to edit. Examples are contained
in Figures 8 to 11. We note that the aspect ratios of some images differ because we used two
datasets—nuScenes, which has a wider aspect ratio than Waymo.
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Figure 8: We present the structure of a Scenic program. A Scenic program consists of a list of
specific vehicles, each with a corresponding definition. Every vehicle is paired with a behavior that
describes its motion over time. The behaviors and vehicle definitions are generated by the program
synthesizer.
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Figure 9: We present additional examples where scenario backgrounds can be manipulated; for ex-
ample we can obtain night scenes and change inclement weather to render under a different weather
condition.

Figure 10: We can manipulate the initial position of the vehicle. The position is defined as a pair
of coordinates relative to the ego vehicle frame. The x-coordinate has been shifted to 0.0, which
causes the vehicle to be translated to the left lane. This shows a way to generate a new scenario to
allow an autonomous driving model to handle diverse situations. The relevant modified vehicle is
indicated in the illustration.
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Figure 11: We can manipulate the position and rotation of the vehicle, as highlighted in the box.
This indicates that we move the vehicle position closer to the ego and rotate the vehicle at 20 degrees
relative to the forward-facing direction. This can be used as a test scenario where a vehicle has cut
in at an angle, presenting a safety hazard.

Figure 12: We show an additional example of manipulation of the position and rotation of the
vehicle. This shows a situation where a vehicle has stopped on the road at a dangerous angle.
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Figure 13: We show an example of manipulating the vehicle position so that the vehicle is sitting at
an arbitrary position on the road.

Figure 14: We show how we can manipulate the trajectory of the vehicles. We replace the instruc-
tions of a vehicle so that it performs a lane change in the simulation. The behaviors here can cause
a critical situation which the autonomous vehicle must react to.
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